Derivadas e Integrais "Tabelas"
Derivada representa a taxa de variação instantânea de uma função. Um exemplo típico é a função velocidade que representa a taxa de variação (derivada) da função espaço. Do mesmo modo a função aceleração é a derivada da função velocidade.
Diz-se que uma função f é derivável (ou diferenciável) se, próximo de cada ponto a do seu domínio, a função f(x) − f(a) se comportar aproximadamente como uma função linear, ou seja, se o seu gráfico for aproximadamente uma reta.
Integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano[1] e também surge naturalmente em dezenas de problemas de Física, como por exemplo na determinação da posição em todos os instantes de um objeto, se for conhecida a sua velocidade instantânea em todos os instantes.[carece de fontes]
O processo de se calcular a integral de uma função é chamado de integração.
Diferentemente da noção associada de derivação, existem várias definições para a integração, todas elas visando a resolver alguns problemas conceituais relacionados a limites,continuidade e existência de certos processos utilizados na definição. Estas definições diferem porque existem funções que podem ser integradas segundo alguma definição, mas não podem segundo outra.
A integral também é conhecida como antiderivada.
Fonte: Wikipedia e tabelas da rede.
Nenhum comentário:
Postar um comentário